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LETTER TO THE EDITOR 

Diffusion laws for random walks on various heterogeneous 
lattices 

D J Gates and M Westcott 
CSIRO Division of Mathematics and Statistics, PO Box 1965, Canberra City ACT 2601, 
Australia 

Received 15 February 1982 

Abstract. Diffusion laws and diffusion coefficients are given for random walks on lattices 
whose scattering probabilities differ from site to site. 

Random walks are models for transport phenomena such as diffusion. For 
heterogeneous media one studies heterogeneous lattices, that is lattices where the 
transition probabilities differ from site to site. Some models of this type were studied 
by Seshadri et af (1979), Westcott (1982), Heyde (1982), Heyde et af (1982) and 
Anshelevich and Vologodskii (1981). 

We consider here models with a more realistic scattering process in which the 
direction of the particle (walker) after scattering depends on its direction before 
scattering. 

One dimension 

A particle starts at 0 with velocity to the east and moves with unit speed on the integer 
lattice H. Its direction (velocity) V, = *l at time t conditional on its direction Vr-l at 
time t - 1 when scattered at site i E Z has probability 

(1) 
i.e. the particle is reflected (back scattered) at site i with probability p I  # 1. 

The diffusion behaviour of the particle depends on how the p I  vary over sites i E Z. 
Many materials are heterogeneous on a microscopic scale but are essentially 
homogeneous on a macroscopic or laboratory scale. In the first approximation, such 
materials can be modelled by p ,  which are periodic in i with period M, say, which can 
be as large as desired. For the displacement 

p i  if V, = - V,. 1 - p I  if V, = V,-l 

x,= Vo+V1+V*+ . . . +  V,-l 

of such walks we can derive the diffusion law (central limit theorem) 

X,/ (Dt)”2  tends in distribution to a standard normal variable as t + CO, (2) 
where 
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is the diffusion coefficient. One can further show that the mean square displacement 
<x: ) satisfies 

(X: ) - Dr as t + m .  (4) 

We note that D depends only on the sum of the pJ(1 -pi) and not on their order 
within the period. This exemplifies, for more general models, the point made by 
Shuler and Mohanty (1982); other instances date back to Rayleigh and Maxwell. For 
further comments see Heyde er al (1982). 

An important special case of the model contains a proportion p of sites with 
symmetric scatterers (pi = $), the remaining sites being empty (pi = 0): then D = l/p. 
We call this the dilute simple random walk (DSRW). It is a lattice version of the 
famous wind-tree model of Ehrenfest. 

The value of D for models with two or more scatterer types in any proportions 
is readily obtained from (3). 

More realistically, we can replace strict periodicity by a condition of macroscopic 
homogeneity, 

1 
M i = j  1-pi D 

1 j + M - 1  - 1 -  pi + - uniformly in j as M + 00 

for some D > 0. Again (2) and (4) can be derived. The uniformity condition may be 
merely a limitation of our method: it is not a severe condition for physical materials. 
Heyde et al (1982) proved similar results for a simpler model under an assumption 
like (5) but without the uniformity. They used a general theory due to Stone (1963). 
This theory and its extensions (e.g. theorem 2.1 of Helland 1982) seem not to be 
useful in our model for technical reasons involving random time changes. 

In the periodic case, the results (2) and (4) are obtained by application of two 
theorems of Smith (1955) for cumulative processes. Theorem 8 implies that 

<x: ) - t( Y2>/(7> (6) 

where Y = integer x M is the displacement at first recurrence of the walk (where the 
walker reaches a point a whole number of periods from the initial point and has the 
initial direction of motion), and 7 is the time (step number) of first recurrence. Now 
in the manner of Westcott (1982) one writes recurrence relations for the mean numbers 
m; ( m y )  of steps to reach this recurrence point from site j with velocity to the east 
(west), and solves these to obtain the surprisingly simple result 

(7) = 2M. (7) 

To obtain (Y’) we note that Y / M  = 1, 0,  -1, -2, . . . only. Then one finds that 

Pr( Y = -kM) = (1 - u ) ~ u ~  for k = 0, 1,2, . . . 
where 

a = Pr( Y = M )  

so that 

(Y)=O and ( Y 2 )  = 2aM2/(1 - a ) .  
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To evaluate a, one adds all contributions from walks starting at 0 which reach M 
before -1 (they may hit 0 any number of times). This yields, with PO = PM, 

where f: is the probability of reaching 0 before M, starting at j E [ l ,  MI with velocity 
to the east. Writing recurrence relations for the f: in the manner of Westcott (1982) 
and solving them gives 

Combining (6)-(11) gives the desired result (4). Then (2) is deduced from theorem 
9 of Smith (1955). 

Our method for the non-periodic case ( 5 )  is very involved. It is based on the 
extension of Smith’s theorem 9 by Westcott (1982) for a simpler type of random walk, 
where one dissects the lattice E into blocks of length M. Here, however, we make 
M increase with t: fast enough to ensure that ( 5 )  converges as t+m,  but slowly 
enough with t to ensure that the model remains close enough to the periodic case. 
This can be achieved with 

(t8Jt)”2<< M<< Jt as t +m (12) 

where 6~ > 0 bounds the magnitude of the difference between the two sides of ( 5 )  (it 
is independent of j and converges to zero as M + CO). 

Two dimensions 

A particle starts at 0 and moves with unit speed on the bonds (i.e. four directions) of 
the two-dimensional integer lattice E’. Its direction V, at time t conditional on its 
direction V,-; at time t - 1 when scattered at site ( i ,  j )  E E 2  has probability 

pij  for back scatter (V, = - V,-;) 4ij for forward scatter (V, = V,-l) 

$(1 - p i j  - 4 i j )  for left turn and for right turn. (13) 

Our results are confined to certain periodic cases. For definiteness, assume the initial 
velocity is to the east, and that pii + 4ij C 1 for all (i, j ) .  

For a layered material one can take an M x 1 periodic cell on 2’. Now the p and 
4 have no j dependence. The displacement 

x, = I vo + v1+ . . . + v,-1 I 
then satisfies (4) with 

Ai = (1 -4i +Pi)/(l+4i -P i ) *  (15) 
We note again the lack of dependence on order among the A i .  

The first term in (14) corresponds to horizontal displacements and is similar to 
(3). It can be derived by the method outlined in the preceding paragraph. To obtain 
the second term corresponding to the vertical displacement, we write the vertical 



L270 Letter to the Editor 

displacement 2 at first recurrence of the walk (hitting any point (iM, j )  with velocity 
to the east) in terms of the horizontal displacement Y = k M  (k = 1, 0, -1, - 2 .  . .) at 
first recurrence: 

(16) 
2 Z . M  i f k = 1  

zF,-l +'yl z:M-l,-(j+l)M-l +ZkM-l ,kM 
W ifk=O,-1,-2, . . .  

where Zz,, (2:") is the vertical displacement during a horizontal displacement from 
column m to column n, starting from m with velocity to the east (west). This expresses 
Z as a sum of independent variables for each k. 

By Smith's theorem 8 the vertical component of the mean square displacement is 
then 

-t(z2>/(T> (17) 
where here (7) = 4M by a calculation similar to the previous one. Now one derives 
recurrence relations for the variances and covariances of terms in (16) in the manner 
of Westcott (1982). For example, the first term in (16) contributes W E ,  where 

(18) E E 2  
oj =(Zj,-l >, 

and if oy is defined likewise we find for j = 0, 1, . . . , M - 1 

and the f are defined previously and satisfy recurrence relations for the horizontal 
motion. Solving these for U:, and solving similar equations for the other terms in 
(16), gives eventually, on substitution in (17), the second term in (14). 

A 2 x 2 periodic cell gives full two-dimensional heterogeneity. In this case the 
particle has only 16 inequivalent states (four positions and four velocities), so that 
the walk can be described by a 16 x 16 transition matrix. Then by diagonalising this 
matrix one obtains, after a rather elaborate calculation, the result (4) with 

D = :[2(Al1 + A i z ) - '  + 2(A12 + A22)-l+ 2(A22 + A21)-l+ ?,(A21 +Ai l ) - ' ]  (21) 

A i j =  ( l - q i j + p i j ) / ( l + q i j - p i j ) .  (22) 
where 

One can readily check that (14) and (21) agree for the 2 X 1 periodic cell. 
The formula 

reduces to (14) when N = 1, to (16) when M = N = 2 and to l / p  for the DSRW 
(pij = qii = f o r  qij = 1). It is therefore a plausible conjecture for the diffusion coefficient 
in the general M x N periodic cell case. 
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To date we have not verified this formula beyond these special cases. Our method 
for the M x  1 cell does not readily extend even to the M x 2  cell. The transition 
matrix method for the 3 x 2 cell gives a 24 x 24 matrix which we have not been able 
to diagonalise. 
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